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ABSTRACT 
 

This paper describes a methodology 
for detecting anomalies from sequentially 
observed and potentially noisy data. The 
proposed approach consists of two main 
elements: (1) filtering, or assigning a belief 
or likelihood to each successive 
measurement based upon our ability to 
predict it from previous noisy observations, 
and (2) hedging, or flagging potential 
anomalies by comparing the current belief 
against a time-varying and data-adaptive 
threshold. The threshold is adjusted based 
on the available feedback from an end user. 
Our algorithms, which combine universal 
prediction with recent work on online 
convex programming, do not require 
computing posterior distributions given all 
current observations and involve simple 
primal-dual parameter updates. At the heart 
of the proposed approach lie exponential-
family models which can be used in a wide 
variety of contexts and applications, and 
which yield methods that achieve sublinear 
per-round regret against both static and 
slowly varying product distributions with 
marginals drawn from the same exponential 
family. Moreover, the regret against static 
distributions coincides with the minimax 

value of the corresponding online strongly 
convex game. We 
also prove bounds on the number of 
mistakes made during the hedging step 
relative to the best offline choice of the 
threshold with access to all estimated beliefs 
and feedback signals. We validate the theory 
on synthetic data drawn from a time-varying 
distribution over binary vectors of high 
dimensionality, as well as on the Enron 
email dataset. 

 
MOTIVATION 

  Anomaly is a deviation from 
a normal behavior. Anomaly detection 
techniques are used to detect unusual 
patterns in data. These patterns deviate from 
the spectrum of normal behaviors in the 
data, and typically they represent critical 
events that occurred in the monitored 
system. Anomaly detection can be used to 
identify sophisticated and targeted attacks 
like Advanced Persistent Threats, where 
standard security systems often fail to 
detect.  

Anomaly detection is an important 
problem in intrusion detection. Intrusion 
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detection is the problem of detecting attacks 
on systems by examining various audit data 
of a system such as TCP packets or system 
logs and differentiating between normal 
users and intruders.    

We explore the performance of 
online anomaly detection methods built on 
sequential probability feedback. We 
sequentially monitor the state of some 
system of interest. At each time step, we 
observe a possibly noise-corrupted version  

 of the current state, and need to infer 
whether  is anomalous relative to the 
actual sequence  = ( , . . . . , ) of 
the past states. This inference is 
encapsulated in a binary decision,  which 
can be either -1 (non-anomalous or nominal 
behavior) or +1 (anomalous behavior). After 
announcing our decision, we may 
occasionally receive feedback on the “true” 
state of affairs and use it to adjust the future 
behavior of the decision-making 
mechanism. 

 
Existing System 
  

The observations cannot be assumed 
to be independent, identically distributed, or 
even come from a realization of a stochastic 
process. In particular, an adversary may be 
injecting false data into the sequence of 
observations to cripple our anomaly 
detection system. 
Observations may be contaminated by noise 
or be observed through an imperfect 
communication channel. 
Declaring observations anomalous if their 
likelihoods fall below some threshold is a 
popular and effective strategy for anomaly 
detection, but setting this threshold is a 
notoriously difficult problem. 

Obtaining feedback on the quality of 
automated anomaly detection is costly as it 
generally involves considerable effort by a 
human expert or analyst. Thus, if we have an 
option to request such feedback at any time 
step, we should exercise this option 
sparingly and keep the number of requests to 
a minimum. Alternatively, the times when 
we receive feedback may be completely 
arbitrary and not under our control at all — 
for instance, we may receive feedback only 
when we declare false positives or miss true 
anomalies. 
 
Proposed System: 

In this project, we propose a general 
methodology for addressing these 
challenges. With apologies to H.P. Lovecraft 
, we will call our proposed framework 
FHTAGN, or Filtering and Hedging for 
Time-varying Anomaly recognition. More 
specifically, the two components that make 
up FHTAGN are: 

Filtering — the sequential process of 
updating beliefs on the next state of the 
system based on the noisy observed past. 
The term “filtering” comes from statistical 
signal processing and is intended to signify 
the fact that the beliefs of interest concern 
the unobservable actual system state, yet can 
only be computed in a causal manner from 
its noise-corrupted observations. 
Hedging — the sequential process of 
flagging potential anomalies by comparing 
the current belief against a timevarying 
threshold. The rationale for this approach 
comes from the intuition that a behavior we 
could not have predicted well based on the 
past is likely to be anomalous. The term 
“hedging” is meant to indicate the fact that 
the threshold is dynamically raised or 
lowered, depending on the type of the most  
 
recent mistake (a false positive or a missed 
anomaly) made by our inference engine. 
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Rather than explicitly modeling the 
evolution of the system state and then 
designing methods for that model (e.g., 
using Bayesian updates), we adopt an 
“individual sequence” (or “universal 
prediction” ) perspective and strive to 
perform provably well on any individual 
observation sequence in the sense that our 
per-round performance approaches that of 

the best offline method with access to the 
entire data sequence.  

 
 
 
 
 
 
 

 Fig 3.1: Context Diagram 

 
 
 

 
 
 
 
 
 

 

ALGORITHMS 

ONLINE  CONVEX PROGRAMMING 

The philosophy advocated in the 

present project is that the tasks of sequential 

probability assignment and threshold 

selection can both be viewed as a game 

between two opponents, the Forecaster and 

the Environment. The Forecaster is 
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continually predicting changes in a dynamic 

Environment, where the effect of the 

Environment is represented by an arbitrarily 

varying sequence of convex cost functions 

over a given feasible set, and the goal of the 

Forecaster is to pick the next feasible point 

in such a way as to keep the cumulative cost 

as low as possible. This is broadly 

formulated as the problem of online convex 

programming 

 

 

 

FILTERING:SEQUENTIAL 

PROBABILITY ASSIGNMENT 

IN THE PRESENCE OF NOISE 

The first ingredient of FHTAGN is a 
strategy for assigning a likelihood (or belief) 

 to the clean symbol based on 
the past noisy observations . 
Alternatively, we can think of the following 
problem: if  is the actual clean symbol that 
has been generated at time t, then our 
likelihood =  , though well-
defined, is not accessible for observation. 
Thus, we would like to estimate it via some 
estimator , which will depend on the 
actual observed noisy symbol , as well as 

on the previously obtained estimates  = 
(  , . . . , )). In the field of signal 
processing, problems of this kind go under 
the general heading of filtering; this term 
refers to any situation in which it is desired, 
at each time t, to obtain an estimate of some 

clean unobservable quantity causally based 
on noisy past observations. 
HEDGING:SEQUENTIAL 

THRESHOLD SELECTION FOR 

ANOMALY DETECTION 

In order to choose an appropriate , 
we rely on feedback from an end user. 
Specifically, let the end user set the label  
as 1 if  is anomalous and -1 if   is not 
anomalous. However, since it is often 
desirable to minimize human intervention 
and analysis of each observation, we seek to 
limit the amount of feedback received. To 
this end, two possible scenarios could be 
considered: 

At each time t, the Forecaster 
randomly decides whether to request a label 
from the end user. A label is requested with 
probability that may depend on  and .   

 At each time t, the end-user 
arbitrarily chooses whether to provide a 
label to the Forecaster; the Forecaster has no 
control over whether or not it receives a 
label. 
As we will see, the advantage of the first 
approach is that it allows us to bound the 
average performance over all possible 
choices of times at which labels are 
received, resulting in stronger bounds. The 
advantage of the second approach is that is 
may be more practical or convenient in 
many settings. For instance, if an anomaly is 
by chance noticed by the end user or if an 
event flagged by the Forecaster as 
anomalous is, upon further investigation, 
determined to be non-anomalous, this 
information is readily available and can 
easily be provided to the Forecaster. In the 
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sequel, we will develop performance bounds 
for both of these regimes. 

 
 

CONCLUSION & FUTURE 

ENHANCEMENT 

We have proposed and analyzed a 
methodology for sequential (or online) 
anomaly detection from an individual 
sequence of potentially noisy observations 
in the setting when the anomaly detection 
engine can receive external feedback 
confirming or disputing the engine’s 
inference on whether or not the current 
observation is anomalous relative to the 
past. Our methodology, dubbed FHTAGN 
for Filtering and Hedging for Time-varying 
Anomaly recognition, is based on the 
filtering of noisy observations to estimate 
the belief about the next clean observation, 
followed by a threshold test. The threshold 
is dynamically adjusted, whenever feedback 
is received and the engine has made an 
error, which constitutes the hedging step. 
Our analysis of the performance of 
FHTAGN was carried out in the individual 
sequence framework, where no assumptions 
were made on the mechanism underlying the 
evolving observations. Thus, performance 
was measured in terms of regret against the 
best offline (non sequential) method for 
assigning beliefs to the entire sequence of 
clean observations and then using these 
beliefs and the feedback (whenever 
available) to set the best critical threshold. 
The design and analysis of both filtering and 
hedging was inspired by recent 

developments in online convex 
programming.  

 
 

REFERENCES: 
 
[1] H. P. Lovecraft, “The call of Cthulhu,” 
Weird Tales, vol. 11, no. 2, pp. 
159–178, February 1928. 
[2] A. Bain and D. Crisan, Fundamentals of 
Stochastic Filtering. New 
York: Springer, 2009. 
[3] C. R. Shalizi, “Dynamics of Bayesian 
updating with dependent data and 
mispecified models,” Electronic J. Statist., 
vol. 3, pp. 1039–1074, 2009. 
[4] N. Merhav and M. Feder, “Universal 
prediction,” IEEE Trans. Inform. 
Theory, vol. 44, no. 6, pp. 2124–2147, 
October 1998. 
[5] M. Zinkevich, “Online convex 
programming and generalized infinitesimal 
gradient descent,” in Proc. Int. Conf. on 
Machine Learning, 2003, 
pp. 928–936. 
[6] A. S. Nemirovsky and D. B. Yudin, 
Problem Complexity and Method 
Efficiency in Optimization. New York: 
Wiley, 1983. 
[7] A. Beck and M. Teboulle, “Mirror 
descent and nonlinear projected 
subgradient methods for convex 
optimization,” Operations Res. Lett., 
vol. 31, pp. 167–175, 2003. 
[8] M. Raginsky, R. Marcia, J. Silva, and R. 
Willett, “Sequential probability 
assignment via online convex programming 
using exponential families,” 
in Proc. of IEEE International Symposium 
on Information Theory, 2009. 
[9] V. Chandola, A. Banerjee, and V. 
Kumar, “Anomaly detection - a 
survey,” ACM Computing Surveys, vol. 41, 
no. 3, 2009. 



[Ezra et al., 3(2): April-June, 2013]                                                            ISSN: 2277-5528 
 
 
 

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 3, Issue 2: April-June: 2013, 142-146 
 

[10] I. Steinwart, D. Hush, and C. Scovel, 
“A classification framework for 
anomaly detection,” J. Machine Learn. Res., 
vol. 6, pp. 211–232, 2005. 
[11] C. Scott and G. Blanchard, “Novelty 
detection: Unlabeled data definitely 
help,” in Proc. 12th Int. Conf. on Artificial 
Intelligence and Statistics 
(AISTATS), D. van Dyk and M. Welling, 
Eds., 2009, pp. 464–471. 
[12] A. B. Tsybakov, “On nonparametric 
estimation of density level sets,” 
The Annals of Statistics, vol. 25, no. 3, pp. 
948–969, 1997. 
[13] P. Bartlett, E. Hazan, and A. Rakhlin, 
“Adaptive online gradient descent,” 
in Adv. Neural Inform. Processing Systems, 
vol. 20. Cambridge, MA: 
MIT Press, 2008, pp. 65–72. 
[14] J. Abernethy, P. L. Bartlett, A. Rakhlin, 
and A. Tewari, “Optimal 
strategies and minimax lower bounds for 
online convex games,” in Proc. 
Int. Conf. on Learning Theory, 2008, pp. 
415–423. 
[15] P. R. Kumar and P. Varaiya, Stochastic 
Systems: Estimation, Identification, 
and Adaptive Control. Prentice Hall, 1986. 
[16] N. Cesa-Bianchi and G. Lugosi, 
Prediction, Learning and Games. New 
York: Cambridge Univ. Press, 2006. 
[17] A. Nemirovski, A. Juditsky, G. Lan, 
and A. Shapiro, “Robust stochastic 
approximation approach to stochastic 
programming,” SIAM J. Optim., 
vol. 19, no. 4, pp. 1574–1609, 2009. 
[18] J.-B. Hiriart-Urruty and C. 
Lemar´echal, Fundamentals of Convex 
Analysis. 
Berlin: Springer, 2001. [19] L. M. Bregman, 
“The relaxation method of finding the 
common points 
of convex sets and its application to the 
solution of problems in convex 

programming,” Comput. Mathematics and 
Math. Phys., vol. 7, pp. 200– 
217, 1967. 
[20] Y. Censor and S. A. Zenios, Parallel 
Optimization: Theory, Algorithms 
and Applications. Oxford, UK: Oxford 
Univ. Press, 1997. 
[21] S. Boyd and L. Vandenberghe, Convex 
Optimization. Cambridge, UK: 
Cambrdige Univ. Press, 2004. 
[22] M. Raginsky, A. Rakhlin, and S. 
Y¨uksel, “Online convex programming 
and regularization in adaptive control,” in 
IEEE Conf. on Decision and 
Control, Atlanta, GA, December 2010, pp. 
1957–1962. 
[23] S. Amari and H. Nagaoka, Methods of 
Information Geometry. Providence: 
American Mathematical Society, 2000. 
[24] M. J. Wainwright and M. I. Jordan, 
“Graphical models, exponential 
families, and variational inference,” 
Foundations and Trends in Machine 
Learning, vol. 1, no. 1-2, pp. 1–305, 2008. 
[25] A. R. Barron and C.-H. Sheu, 
“Approximation of density functions by 
sequences of exponential families,” Ann. 
Statist., vol. 19, no. 3, pp. 
1347–1369, 1991. 
[26] T. M. Cover and J. A. Thomas, 
Elements of Information Theory, 2nd ed. 
New York: Wiley, 2006. 
[27] K. S. Azoury and M. K. Warmuth, 
“Relative loss bounds for on-line 
density estimation with the exponential 
family of distributions,” Machine 
Learning, vol. 43, pp. 211–246, 2001. 
[28] T. Weissman and N. Merhav, 
“Universal prediction of individual binary 
sequences in the presence of noise,” IEEE 
Trans. Inf. Theory, vol. 47, 
no. 6, pp. 2151–2173, 2001. 
[29] B. S. Clarke and A. R. Barron, 
“Information-theoretic asymptotics of 



[Ezra et al., 3(2): April-June, 2013]                                                            ISSN: 2277-5528 
 
 
 

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 3, Issue 2: April-June: 2013, 142-146 
 

Bayes methods,” IEEE Trans. Inform. 
Theory, vol. 36, no. 3, pp. 453– 
471, May 1990. 
[30] M. Herbster and M. K. Warmuth, 
“Tracking the best expert,” Machine 
Learning, vol. 32, no. 2, pp. 151–178, 1998. 
[31] ——, “Tracking the best linear 
predictor,” J. Machine Learn. Res., vol. 1, 
pp. 281–309, 2001. 


